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Abstract

We investigate a modified sine-Gordon equation which possesses soliton solutions with long-range interaction. We
introduce a generalized version of the Ginzburg-Landau equation which supports long-range topological defects in D = 1
and D > 1. The interaction force between the defects decays so slowly that it is possible to enter the non-extensivity regime.
These results can be applied to non-equilibrium systems, pattern formation and growth models. © 1998 Elsevier Science

B.V.
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1. Introduction

In recent years there has been a great interest in the
interaction of topological defects [ 1-9]. In particular,
it is very important to formulate models in which the
solitons can interact with long-range forces [6]. This
is due to several reasons. The majority of the known
models supports solitons that interact with short-range
forces [6]. However, the real transfer mechanisms are
long-range [9-11]. This can be observed in a great
number of physical systems, including condensed mat-
ter theory [11], spin glasses [13], neural systems
{14], biological systems [10,11,15-17], DNA dy-
namics [7,15-17], etc.

On the other hand, it is very relevant per se to
have models where there is spontaneous formation of
particle-like structures that possess long-range inter-
action. These models would allow one to study pattern

formation and other complex phenomena. It is well-
known that systems with long-range microscopic in-
teractions can exhibit non-extensive behavior [ 18,19].
For these systems new statistical theories have been
proposed [20] and they require verification.

Recently, some authors have considered long-range
effects [9] using ad hoc nonlocal terms in the equa-
tions. Spin systems have also been studied, where the
coupling constant J;; between the lattice spins is a ra-
tional function of coordinates [12].

In Ref. [6] Gonzédlez and Estrada-Sarlabous
showed for the first time that pure Kiein-Gordon
systems,

¢tt_¢xx=G(¢')» (1)

where G(¢p) = —dU(¢)/dp, without coordinate-
dependent terms, can support solitons with long-range
interactions. In Eq. (1) we assume that potential
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U(¢) possesses at least two minima (in points ¢,
and ¢3), in a neighborhood of which

U(g) ~ (¢ — d)™. (2)

For n =1 the solitons interact with short-range forces
(which decay exponentially). For n > 1, the solitons
interact with forces that decay with the distance d as

FNdZ"/(l—”), (3)

In the present Letter we investigate a system of type
(1) that is a generalization of the sine-Gordon equa-
tion, We will show that it possesses solitonic solutions
that present long-range interaction.

As an example of systems with dimension D > 1,
which supports topological defects whose interaction
force decays very slowly we introduce a generalized
version of the Ginzburg-Landau equation. We are able
to create a gas of topological defects with an inter-
action force that decays so slowly that we enter the
interesting regime of non-extensivity.

Finally, we will show how these results can be ap-
plied to non-equilibrium systems, pattern formation
and growth models and some specific physical sys-
tems.

2. Klein—Gordon equation

In this section we will study the equation [8]

by — Prx + 2sin> ! (3¢) cos (3¢) =0. (4)
Eq. (4) can be derived from the Lagrangian density
L=1¢? - 12 - U(¢), (5)
where
2 .
U(¢) = =sin™ (1) (6)
The corresponding stress~energy tensor is
aL
T,uu = (%7 ¢/L - Lﬁ;w' (7N

The energy density is given by

Too = E[G(x)] = §7 + 12+ U(), (8)

while the momentum density is

Tio = pld(x)] = 1. 9

We will calculate the force that is exchanged between
two solitons: one placed in x = x; and the otherin x =
x2 = —x1. Then we will follow the motion of one of
these solitons under the action of the interaction force.

For a solitary soliton we define the coordinate of
the center of mass,

oo

xcm=-;: /xew(xndx, (10)

-0

where E = f fooo E[¢d(x)] dx. After some algebra with
formulas (7)-(10), we conclude that the module of
the static force exchanged between the two solitons is
given by the expression

F=|T)(x=0,d)| = 1¢*(x=0,d), (11)

where ¢ (x, d) is the solution that describes the super-
position of two solitons: one situated in point x; and
the other in point x,. Additionally, d = x, — x;.

The solution for a static solitary soliton can be ob-
tained from the equation

162=U(¢). (12)

Substituting the superposition of two soliton solutions
from Eq. (12) in Eq. (11) (using (6)) for different
n, yields the following asymptotic behavior,

Fr~e forn=1, (13)

while

F~d™i=m_ forn> 1. (14)
These results coincide with the ones obtained in
Ref. [6] using other considerations.

Solitons with topological charge of equal sign in-
teract with a repulsive force. When the topological
charges are of opposite sign, the solitons attract each
other.

However, formula (11) is very versatile and can be
applied even when the distance between the solitons
is small. In particular, it can be shown that the force
between the solitons is finite for d = 0.
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We can study numerically the dynamics of the in-
teraction between two solitons. For this we will take
Eq. (4) in an overdamped regime,

$1 = bu — 2sin”' (36) cos (39) , (15)

with the aim to have the soliton velocity being propor-
tional to the force that is acting on it. The initial con-
dition corresponds to the superposition of two kinks
situated at a finite distance,

¢ (x,0) =4 [arctan (e' ) + arctan (¢*7*°)] — 247,
(16)

¢:(x,0) =0. (17)

We wish to observe the motion of the soliton placed
in the point x; = xo > 0. In this case the center of
mass will be defined as

o0

Xcm=é/x5[¢(x)]dx, (18)

0

where E = fooo E[H(x)]dx. The soliton is repelied
and its velocity will decay as it moves away.

When n = 1 the soliton moves away slightly and
then it stops. This is because the interaction decays
exponentially and when the solitons are separated at
some distance they do not “feel” the interaction any-
more.

For n > 1 the approximate decay law of the velocity
coincides with the decay law of the force (14). Fig. 1
shows the log-log dependence of the soliton velocity
on the distance for different n. The perfection of the
power-law is striking.

3. A generalized Ginzburg-Landau equation

In this section we will study a generalization of the
Ginzburg-Landau equation,
a 2\ 2
M2 u(l — ). (19)
at
Note that for n = 1 we recover the well-known
Ginzburg-Landau (GL) equation [ 1,4,5].

Even when n > 1, Eq. (19) preserves all the topo-
logical properties of the original Ginzburg-Landau
equation. There exists an unstable state at u = O and a
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Fig. 1. Power-law dependence of the soliton velocity on the dis-
tance from the other interacting soliton. The slopes are 3.9 for
n=230forn=3,27forn=4and 25 for n=5.

degenerate stable state at |u| = 1. Alike the GL equa-
tion, Eq. (19) possesses topological solitons.

There is, however, an important difference. For D =
1 and n = 1, GL solitons interact with a force that de-
cays exponentially with the distance. The soliton so-
lutions of Eq. (19) (n > 1) interact with long-range
forces as the long-range Klein—~Gordon equation. Nev-
ertheless, in this section, we will be interested in the
case D = 2.

Using the transformations U = pe' Eq. (19) can be
rewritten as a pair of coupled differential equations,

p=V2p-—p|V0|2+p(l _p2)2n—1’ (20)
6=V +2p"'VpV8. (21)

A vortex-like topological defect with topological
charge K can be expressed in polar coordinates (7,
¢) by the following equations,

6 =Ko, (22)

d’R 1dR K°R Indnol
) ;E;““'E"FR(]—-R) =0, (23)
where we have defined p = R(r).

The configurations with topological charge |K| = 1
are stable.

The analysis of the asymptotic behavior of the vor-
tex solution of Eq. (23) yields that in the limit r — oc

R(ry —1~r72, (24)



280 B.A. Mello et al./Physics Letters A 244 (1998) 277-284

when n=1.
If n > 1, then
R(r) — 1 ~ pl/0—m), (25)

In the case of the generalized GL equation (19), the
force that acts on a vortex situated in point r due to
the existence of another vortex in the origin of co-
ordinates satisfies the relation F ~ R(r) — 1. Thus,
the vortices produced by Eq. (19) with n = 1 have
Coulomb interaction [5]. Meanwhile, for n > 1 the
interaction decays much more slowly.

4. Non-extensivity

The systems with long-range microscopic interac-
tions can exhibit non-extensive behavior [19]. Re-
cently, some alternative thermostatistics theories have
been formulated [20].

In principle, it is possible to construct a system de-
scribed by equations of the type

e i) 2, V(e |d2])
w2 Y u _vd)]___—_ﬁq';—-—’ (26)
Py by o, Vil ]2
praub *V¢2—“_~————“5¢2 , @2

where potential V(|¢,|. |¢2]) holds the necessary con-
ditions in order to produce long-range interactions.

When we are in the presence of a system of equa-
tions like (26), (27) with two order parameters, we
can have the situation where the sustained topological
defects repel each other at very small distances and
they attract each other at great distances [21].

We can have an effective interaction potential like
the following,

o pni2 P a2
(i) ()]

where a < p.

This is a situation equivalent to that discussed in
Ref. [19]. Thus, when we have N particles in the
system, the energy will grow with N following the
laws

-

log o(L}

Z

L 1 1 1 1 1 i}
05 10 15 20 25 30 35
log, L
Fig. 2. Stationary regimes of the growth model described by
Eq. (30) for n = 1 (lower curve), n = 10 and n = 20 (the two
following curves), and n = 40 (upper curve). Note that for n >> |
self-affinity extends to greater scales.

E~N ifa/D>1,
~NIN ifa/D=1,
~ NP ifa/D < 1. (29)

Inourcase @ = (2—n)/(n—1). When n > 1 we are
deeply in the non-extensive regime.

5. Growth models and pattern formation

Recently there has been a great interest in fractal
surface growth [22,23]. Special attention has de-
served the well-known KPZ equation [24]. Nonethe-
less, other equations have been studied as well
[25,26], including the sine-Gordon model.

In this section we present an alternative model
which is given by the equation

b+ v — V2 — G($) = n(x,1), (30)
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where 7(x,t) is a white noise with the properties
((x, 1)) =0,{(n(x, ) p(x',¢")) =2D8(t 1) 8(x—
x'). Here the potential U(¢) = ‘.sinz"(%db), G(¢) =
—aU () /a¢, holds the long-range interaction condi-
tions discussed above.

This model presents noise-induced pattern forma-
tion. For n = | we recover the sine-Gordon equation.
In this case, when the noise is small and the soliton-
antisoliton pairs are not being created yet, the rough-
ening exponent is zero. After the creation of the soli-
tons we observe a crossover from a non-KPZ behavior
(& ~ 0.7-0.8) to a KPZ behavior (£ ~ 0.5). How-
ever, for great scales, there is a plateau with £ = 0. The
sine-Gordon equation does not eliminate the disorder
at great scales.

Eq. (30) with n > | can be used as growth model
for periodic media with marginal stability [8]. In this
case, the activated solitons possess long-range inter-
action. Fig. 2 shows the stationary regimes for differ-
ent n. For n > 1 sell-affinity extends to all scales.
Unlike the case n = |, the surface in case n = 40
presents only two self-affine regimes, the anomalous
(& ~ 0.818) and the KPZ-like (£ ~ 0.5). The system
displays fractal behavior at all scales.

We are interested in the process of pattern formation
in Eq. (30). For this purpose we apply the wavelet
transform analysts [27]. Fig. 3 shows the wavelet ex-
pansion of the stationary state for n = 40, y = 0.252.
We have used the “Mexican hat” wavelets, where a
and b are the scale and position parameter, respec-
tively. The existencc of structures at different scales ts
evident. There is also local self-similarity. The pitch-
fork patterns are linked with fractal order.

6. Long-range interacting solitons in nature

In addition to the physical phenomena already men-
tioned throughout the paper, in this section we briefly
discuss some other physical systems where there is
evidence for the long-range interactions between the
topological solitons appearing there.

It is well-known that topological solitons play a
very important role in nonlinear quantum field theories
[28-36]. Extended-particle states in quantum field
theories can be described by solitons based on classi-
cal solutions to the field equations. The corresponding
particle-like solutions are cquivalent to fermions,

The main postulate in these theories is a Lagrangian
density,

L=1¢? — 142 -U(e), (31)

where U(¢) possesses (at least) two degenerate
minima, corresponding to the vacuum solutions. This
model describes a self-interacting scalar field. In some
cases the Lagrangian can include the interaction of
field ¢ with other quantum (vector, spinor) fields.

The most common models use the sine-Gordon
and ¢* equations [28-33]. In this case, the topolog-
ical solitons can be interpreted as hadrons [28-33]
(strongly interacting particles). For these particles,
interaction has a short-range character. Nevertheless
in nature, there exist also elementary particles with
long-range interactions [6,31].

Note that when the potential U(¢) behaves as
U($) ~ (¢ —¢i)* (n> 1) near the vacuum val-
ues, we obtain

U(9)
ECAC2N 32
[ ¢ L=¢, %)

But this is equivalent to saying that the field is mass-
less [6,8,31]. A well-established fact in elementary
particle physics is that a massless field leads to the ex-
istence of long-range interacting particles {31]. How-
ever, if we put m = 0, for instance, in the ¢*-theory
Lagrangian [29]

L=3¢; -3¢t +3m*e* — fag* — tm'/A,  (33)

we do not have solitons anymore. For this we need a
U(¢) with two or more minima [6].

So, if we wish to describe these particles using soli-
ton solutions in a theory like (31) (and not with a lin-
ear theory as QED does), in order to derive the prop-
erties of the particles and their interaction from the
Lagrangian, then we should require a massless field
and a multi-degenerate vacuum. And these properties
are contained in the nonlinear Klein—-Gordon model
discussed in this Letter.

In Ref. [37] the authors study the phase-locking in
coupled long Josephson junctions. In Josephson junc-
tions the fluxons are described by topological soli-
tons of the sine-Gordon equation. However, if two or
more long Josephson junctions are coupled, the exter-
nal magnetic fields created outside the junctions will
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Fig. 3. Wavelet expansion of the ¢ (x, 1) profile produced by Eq. (30). This figure shows the existence of coherent structures at different

scales.

overlap producing long-range interactions. The exper-
imental results presented in several papers [38-41]
show that the magnetic interaction is strong enough to
produce substantial phase-locking between the flux-
ons.

The assumption in Ref. [37] is that the external
magnetic coupling leads to a nonlocal interaction. In
fact, there is experimental evidence that can be inter-
preted as a manifestation of the long-range interaction
between the fluxons.

An array of two long Josephson junctions can be
modeled by a system of two coupled modified sine-
Gordon equations which are a particular case of the
set of equations (26), (27). Thus, the results obtained
in the present Letter concerning the long-range inter-
action between topological solitons could be applied

to the fluxons in magnetically coupled long Josephson
junctions.

In the Yakushevich model for solitons in the DNA
torsional dynamics {7,43], the equations of motion
are

au

Il¢|n—Klaz¢lzz=_E’ (34)
U
L — Kad oy, = gy (35)

where
lo 2
U(dy,dr) = %kR2{ [(2 + 2 cos gy — coszi)z)

. . RN
+ (sin ¢; — sin ¢2) - —E} , (36)
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For an explanation of the variables, parameters and a
theoretical investigation see Refs. [7,43].

It can be shown [7,21] that the potential U (¢, ¢»)
possesses the degeneracy properties discussed in the
present Letter. Therefore the solitons can interact with
long-range forces which could explain some of the
long-range effects observed in this molecule [ 15-17].

Another important phenomenon in biophysics is the
formation of protein structure [44] (protein folding).
Recent studies [45] consider that this process is con-
trolled by long-range excitations dynamically induced
along the backbones of protein molecules. We think
that the results obtained here could help in formulat-
ing a new model of protein folding and/or the inter-
pretation of experimental data.

7. Conclusions

The nonlinear Klein—-Gordon equation (1) with a
potential U(¢) that satisfies the degeneracy properties
discussed in this Letter (see formula (2)) possesses
solitonic solutions that interact with long-range forces.
In particular, we investigated the model described by
Eq. (4).Forn = | (the sine-Gordon equation), the in-
teraction force decays exponentially, whereas for n >
I the interaction force decays with the distance as F ~
d*/'=" The numerical experiments with Eq. (15)
confirm this result.

The Ginzburg-Landau equation can be generalized
in such a way that the topological defects supported
by this equations present long-range interaction both
mD=1land D > 1.

In particular, when D = 2 we have the following
behavior: F(d) ~ d~? for n = 1. On the other hand,
F(d) ~ d"0=" Jor p > 1.

A system of two cquations with two complex or-
der parameters can be constructed in such a way that
the interaction force between the topological objects
decays so slowly that we enter the non-extensivity
regime. This is important in order to study a whole se-
ries of physical systems from vortices in liquid helium
to cosmic strings [46].

Systems of interacting particles with long-range in-
teractions exhibit a very complex dynamics that can-
not be described by the Boltzmann-Gibbs statistics.
Recently, alternative thermostatistical theories have
been formulated. The models studied in this Letter

could help to verify these theories.

The growth model described by Eq. (30) has in-
teresting features. It experiences a transition to an or-
dered state associated with the activation of a soliton
gas. There is a crossover from an anomalous non-KPZ
behavior to a KPZ behavior. However, unlike the sine-
Gordon equation, in our model the self-affinity extends
to all scales.

Note that it is the KPZ-like behavior that extends to
infinity. This is because the KPZ regime is related to
the absence of a mass term in the evolution equation
[8]. And this is the case of Eq. (4) for n > 1. The
anomalous regime is due to the existence of soliton
solutions. The solitons are present both in the sine-
Gordon equation and the long-range Klein-Gordon
equation. On the other hand, the KPZ equation is not a
soliton-bearing system. These considerations explain
the existence of two regimes in the long-range Klein-
Gordon equation, unlike the KPZ equation and the
sine-Gordon equation.

The wavelet analysis permitted to observe the exis-
tence of coherent structures at all scales.

In general, the models we have studied can de-
scribe a “world” where there is spontaneous formation
of topological objects with long-range interactions,
which can create complex structures showing fractal
behavior.
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